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Scalar Conservation Laws

We consider the initial value problem

8:U + 8, A(U) = 0,
{ U(x,0) = U(x).

» U:RxRtT - R

» A:R — R smooth and strictly convex
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An L2 Stability Estimate for Shocks

Theorem (L. 2010). Let U° € L*°(R) and assume U® — ¢ € L?(R) where

Uy, iftx<Q;
ox) =< "
Ugr, ifx>0,

with Uy > Ug. Further, assume U is the unique entropy solution of (IVP).
Then there exists a Lipschitz continuous function x : [0,00) — R and a
constant A(||U°|| ; ¢; A) > 0 such that

JU(, 8) = ¢(- — ot = x(0)) ]l 2y < 1U° = @l 2qmy
and
Ix(£)] < A U° = [l 12wy V't

for all t > 0, where o is given by the Rankine-Hugoniot relation.
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Systems of Conservation Laws

o.U +0,A(U)=0, i=12..,n
U(x,0) = UO(x).

» Many fundamental questions related to the well-posedness of
systems of conservation laws remain open.

» Much of the theory requires some smallness condition on the
solutions.

> For example, existence of solutions is known (via the Glimm
scheme, wave-tracking methods, etc.) when the initial data
has sufficiently small total variation.

» The L! stability theory of Bressan et al. relies on similar
assumptions. In particular, KruZzkov's estimate fails.



Hugoniot Curves
A(Su,(s)) = A(UL) = a(Su,(s) — UL)




Entropy Solutions

Consider the system
0:U + 04A(U) = 0,
and assume U takes values in V C R". Then,
n:YV—-=R
is called an entropy of (1) if there exists
G:V—-R

such that
8_,'6 = Vn : 8_,'/4.



Entropy Solutions

» A weak solution U is called an entropy solution if
den(U) + 0xG(U) <0,

in the sense of distributions.



Entropy Solutions

» A weak solution U is called an entropy solution if
den(U) + 0xG(U) <0,
in the sense of distributions.

» We say that (U, Ugr) is an entropic Rankine-Hugoniot
discontinuity if there exists o € R such that

A(UR) — A(UL) = O‘(UR — UL),
G(Ur) — G(UL) < a(n(Ur) — n(UL)).



The Main Result

Assumptions

» A€ C?(V) where V C R™ is open, bounded, and convex.



The Main Result

Assumptions

» A€ C?(V) where V C R™ is open, bounded, and convex.

> n,G € C?(V), n strictly convex.



The Main Result

Assumptions

» A€ C?(V) where V C R™ is open, bounded, and convex.
> n,G € C?(V), n strictly convex.

» 1, Aand G are continuous on U = V.



The Main Result

Assumptions

» A€ C?(V) where V C R™ is open, bounded, and convex.
» 1, G € C3(V), n strictly convex.
» 1, Aand G are continuous on U = V.

> A7 (U) (respectively, AT(U)) is a simple eigenvalue of VA(U)



The Main Result

Assumptions

» A€ C3(V) where ¥V C R™ is open, bounded, and convex.

> n,G € C?(V), n strictly convex.

» 1, Aand G are continuous on U = V.

> A7 (U) (respectively, AT(U)) is a simple eigenvalue of VA(U)

» U; €V satisfies (H1)-(H3)



The Main Result

Theorem (L. - Vasseur, ARMA, 2011). Assume U, Ug € V form a 1-shock (or
1-contact discontinuity) with velocity o. Then 3 C > 0, €9 > 0 such that for any
0 < e < gp and any weak entropic solution U € L*(0, T;U) with the strong trace
property (STP) verifying

0 o]
/ Uo(x) — UL dx < 4, / Un(x) — Ul dx < &,
—0 0
there exists a Lipschitz curve t — x(t) such that forany 0 <t < T:
0 0
/ U(x +x(£), £) — U P d < 4, / U(x +x(£), £) — UgP dx < C(1+ t)e.
oo 0

Moreover,

[x(t) — ot| < Cy/et(1+t).



Structural Hypotheses

Let U € L*°(R x R™). We say that U verifies the strong trace
property if for any Lipschitz curve t — X(t), there exists two
bounded functions U_, U, € L°(R™) such that for any T >0

T
0= lim / esssup |U(t, x(t) +y) — Uy (t)| dt
e=0J0  ye(0,e)
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Structural Hypotheses

Let U € L*°(R x R™). We say that U verifies the strong trace
property if for any Lipschitz curve t — X(t), there exists two
bounded functions U_, U, € L°(R™) such that for any T >0

T
0= lim / esssup |U(t, x(t) +y) — Uy (t)| dt
e=0J0  ye(0,e)

T
= lim / esssup |U(t,x(t) +y)— U_(t)| dt
=0Jo  ye(—¢,0)

» All functions U € L N BV, verify the strong trace property.



Structural Hypotheses
(H1) 8= inf (U UL)




Structural Hypotheses
(H2) UeBando <A (U) = V =5y(s) (1-shock)




Structural Hypotheses
(H3) veB = o>27(V)




Relative Entropy

For any fixed state V € V), entropy solutions verify

om(U | V) +0.F(U,V) <0,
where

n(U | V) =n(U) —n(V)—-Vn(V)-(U-V)

is the quadratic part of n at V



Relative Entropy

For any fixed state V € V), entropy solutions verify

om(U | V) +0.F(U,V) <0,
where

n(U | V) =n(U) —n(V)—-Vn(V)-(U-V)

is the quadratic part of  at V, and F(U, V) is defined by

F(U,V) = G(U) = G(V) = Vn(V) - (A(U) — A(V)).



Relative Entropy

When 1 is strictly convex, i.e., D?n is positive definite, we have

1
2= VE<qU|v) < Clu- VP



A Relative Entropy Technique For Shocks

We would like to control the quantity
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A Relative Entropy Technique For Shocks

We would like to control the quantity

oo x(t)

a0y otx - xtenax = |

—00 —00

oo

WU, ) | Ur) dx + / )| U)o

Formally,

d x(t)
&{/ "(U(Xﬂf)iUL)dx} < (O n(U(e), )| UL) = FU(x(e). 1), L),

d

dt {/ U] uR)dx} < F(U(x(0), £), Ur) = 5(0)n(U(x(2). £) | Ur).

(®)



A Relative Entropy Technique For Shocks

We would like to control the quantity

0 x(t) e

[ ety [otx = xtede= [ a(Uee )| U der [ nUex) | Ug)d
— oo —o0 x(t)

Formally,

d x(t)
P {/ n(U(x,t) | UL) dx} < x()n(U(x(t), t)| UL) — F(U(x(t),t), Up),

d

dt {/ U] uR)dx} < F(U(x(0), £), Ur) = 5(0)n(U(x(2). £) | Ur).

(t)
We may define, for instance,

F(U(x(1), 1), Ur)

O = 00, D [ 0)°



An Important Formula

An explicit formula for the loss of entropy across a shock is given by

G(Su,(s)) — G(UL) = auy,(s) (n(Su,(s)) —n(UL))

+ /0 "0, (1) (UL | Sy, (7)) dr.



An Important Formula

An explicit formula for the loss of entropy across a shock is given by

G(Su,(s)) — G(UL) = auy,(s) (n(Su,(s)) —n(UL))

+ / S0, (r) (UL | Sy, (7)) dr.
0
Equivalently,

F(Su,(s), Ur) — au,(s)n(Su,(s) | Ur)

_ / 50 (M(UL | S0, (7)) — (Ve | Ug) dr
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2 x 2 Euler system

{ Orp + Ox(pu) =0
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{ Orp + Ox(pu) =0
d:(pu) + Ox(pu® + P(p)) = 0.

> P'(p) >0, [pP(p)]" = 0.

CF s, sy = "0

> 1(p, pu) =




2 x 2 Euler system

{ Orp + Ox(pu) =0
d:(pu) + Ox(pu® + P(p)) = 0.

> P'(p) >0, [pP(p)]" = 0.
sl = O ks ()= 2
> G(p,pu) = (pu)” + puS'(p)

2p?




2 x 2 Euler system

{ Orp + Ox(pu) =0
d:(pu) + Ox(pu® + P(p)) = 0.

> P'(p)>0,  [pP(p)]" = 0.
sl = O ks ()= 2
> G(p,pu) = (/2);33 + puS'(p)

>V ={(p,pu) €RT xR | 0 < [[(p, )l < K}.



Thank Youl!



